Data Analysis with Excel & Power BI

Data Analysis with Excel & Power BI

Beginner → Pro Practice-ready Bangla toggle

Default language: English · Toggle for casual Bangla

What you'll learn

  1. Excel Basics: formulas, tables, sorting, filtering
  2. Lookup & Logic: IF, XLOOKUP, text/date tricks
  3. Analysis: Pivot Tables, charts, data cleaning
  4. Power BI: Get Data, Power Query, visuals, publishing
  5. DAX: measures for KPIs (Revenue, AOV, YoY growth)

Level 1 — Excel Basics

A. Build your first table

Create a table like this (or open students_marks.csv):

StudentSubjectMarks
ArafatMath75
SamiraEnglish65
RafiScience82
EshaMath55
MahinEnglish92
Task 1:
=SUM(C2:C6) Total marks
=AVERAGE(C2:C6) Average marks
Tip: Press Ctrl+1 to format numbers.

B. Sort & Filter

Turn range into a Table: Ctrl+T → check “My table has headers”. Now use header arrows to filter.

C. Must-know formulas

  • SUM, AVERAGE, MAX, MIN
  • ROUND(number, digits), TEXT(value,"0.00")
  • Date: TODAY(), MONTH(date), YEAR(date)

Level 2 — Logic & Lookup

A. Pass/Fail with IF

In D2:

=IF(C2>=60,"Pass","Fail") then fill down

B. XLOOKUP (better than VLOOKUP)

Open sales_detail.csv and products_lookup.csv. Suppose you only have SKU and want ProductName/Category.

=XLOOKUP([@SKU], Products[SKU], Products[ProductName]) Product name
=XLOOKUP([@SKU], Products[SKU], Products[Category]) Category

C. Useful text & date tricks

  • PROPER("mahIN")Mahin, TRIM(" AAZ ")AAZ
  • DATEVALUE("2025-06-30"), TEXT(A2,"yyyy-mm") → nice month labels

Level 3 — Analysis in Excel

A. Clean data fast

  • Remove Duplicates: Data → Remove Duplicates
  • Find/Replace: Ctrl+H
  • Split columns: Data → Text to Columns

B. Pivot Table (your best friend)

  1. Select the Sales table → Insert → PivotTable
  2. Place OrderDate in Rows (Excel will auto group by month) and Revenue in Values (Sum)
  3. Add Category to Columns to compare categories by month
Task 3: Create a Pivot: Month vs Category (Sum of Revenue). Add a Slicer for Region.

C. Charts that matter

  • Column/Line for monthly trend
  • Stacked column for Category mix
  • KPI Card (big number): just format a cell with the main metric

Level 4 — Power BI (from zero)

A. Get Data

  1. Power BI Desktop → Get Data > Text/CSV → load sales_detail.csv
  2. Repeat for products_lookup.csv
  3. Model view: relate Sales[SKU]Products[SKU] (Many-to-One)

B. Power Query cleaning

  1. Home → Transform Data (Power Query)
  2. Change OrderDate type to Date; split OrderDate into Year, Month (Add Column → Date → Year/Month)
  3. Trim & Clean text columns (Transform → Format)
  4. Close & Apply

C. Core visuals

  • Clustered Column: Axis = Month, Value = Revenue
  • Stacked Column: Axis = Month, Legend = Category, Value = Revenue
  • Card: Field = Total Revenue (measure below)
  • Slicers: Region, PaymentMethod, Category

D. DAX – essential measures

Total Revenue = SUM(SalesDetail[Revenue])
Total Orders = DISTINCTCOUNT(SalesDetail[OrderID])
AOV = DIVIDE([Total Revenue],[Total Orders])
Revenue Last Year = CALCULATE([Total Revenue], DATEADD('SalesDetail'[OrderDate], -1, YEAR))
YoY % = DIVIDE([Total Revenue]-[Revenue Last Year],[Revenue Last Year])

E. Publish & share

  1. Home → Publish (sign in to Power BI Service)
  2. Get a share link or embed in your site/app (respect access rules)

Level 5 — Pro Practice & Portfolio

A. Business-style report

  • KPIs: Revenue, Orders, AOV, Return % (if you add a returns table later)
  • Trends: Revenue by Month, Region map, Payment mix

B. Scenario prompts

  • “Which region grew the fastest last month?”
  • “Which category has the highest AOV?”
  • “What’s our discount impact on revenue?”
Portfolio Task: Export a PDF of your dashboard + 3 bullet insights. Add to your LinkedIn/website.

কি শিখবে?

  1. Excel বেসিক—ফর্মুলা, টেবিল, sort/filter
  2. Lookup & Logic—IF, XLOOKUP, তারিখ/টেক্সট টিপস
  3. Analysis—Pivot Table, চার্ট, ডাটা ক্লিনিং
  4. Power BI—Get Data, Power Query, ভিজ্যুয়াল, Publish
  5. DAX—Revenue, AOV, YoY এর মত KPI measure

Level 1 — Excel Basics

A. প্রথম টেবিল

students_marks.csv খুলে নাও বা নিচের টেবিল বানাও:

স্টুডেন্টসাবজেক্টমার্কস
ArafatMath75
SamiraEnglish65
RafiScience82
EshaMath55
MahinEnglish92
টাস্ক ১:
=SUM(C2:C6)মোট
=AVERAGE(C2:C6)গড়
টিপ: নাম্বার ফরম্যাট করতে Ctrl+1

B. Sort & Filter

Ctrl+T দিয়ে Range → Table বানাও। তারপর হেডার থেকে ফিল্টার করো।

C. দরকারি ফর্মুলা

  • SUM, AVERAGE, MAX, MIN
  • ROUND(), TEXT() দিয়ে ফরম্যাট
  • Date: TODAY(), MONTH(), YEAR()

Level 2 — Logic & Lookup

A. IF দিয়ে Pass/Fail

D2 তে লিখো:

=IF(C2>=60,"Pass","Fail") নিচে নামাও

B. XLOOKUP

sales_detail.csv + products_lookup.csv নাও। শুধু SKU থাকলে নাম/ক্যাটাগরি টেনে আনবে:

=XLOOKUP([@SKU], Products[SKU], Products[ProductName])Product name
=XLOOKUP([@SKU], Products[SKU], Products[Category])Category

Level 3 — Excel এ অ্যানালাইসিস

A. ডাটা ক্লিন

  • Remove Duplicates
  • Find/Replace (Ctrl+H)
  • Text to Columns

B. Pivot Table

  1. Sales সিলেক্ট → Insert → PivotTable
  2. Rows = OrderDate (Month group), Values = Revenue (Sum)
  3. Columns = Category
টাস্ক ৩: Month × Category পিভট বানাও, Region স্লাইসার দাও।

C. চার্ট

  • Monthly trend (Column/Line)
  • Category mix (Stacked)
  • KPI big number (একটা সেল সুন্দর করে ফরম্যাট)

Level 4 — Power BI

A. Get Data

  1. Power BI → Get Data → Text/CSV → sales_detail.csv
  2. আবার products_lookup.csv লোড
  3. Model এ Sales[SKU]Products[SKU] রিলেশন

B. Power Query

  1. Transform Data → OrderDate কে Date টাইপ
  2. Add Column → Date → Year/Month
  3. Text Trim/Clean
  4. Close & Apply

C. Visuals

  • Column (Month vs Revenue)
  • Stacked (Month × Category)
  • Card (Total Revenue)
  • Slicers (Region, PaymentMethod)

D. DAX মেজার

Total Revenue = SUM(SalesDetail[Revenue])
Total Orders = DISTINCTCOUNT(SalesDetail[OrderID])
AOV = DIVIDE([Total Revenue],[Total Orders])
Revenue Last Year = CALCULATE([Total Revenue], DATEADD('SalesDetail'[OrderDate], -1, YEAR))
YoY % = DIVIDE([Total Revenue]-[Revenue Last Year],[Revenue Last Year])

Progress





Made for Scaled learners • Keep practicing with the sample files above.
0
    0
    Review Your Cart
    Your cart is emptyReturn to Shop